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Abstract. A system of coupled master equations simplified from a model of noise-driven globally coupled
bistable oscillators under periodic forcing is investigated. In the thermodynamic limit, the system is reduced
to a set of two coupled differential equations. Rich bifurcations to subharmonics and chaotic motions are
found. This behavior can be found only for certain intermediate noise intensities. Noise with intensities
which are too small or too large will certainly spoil the bifurcations. In a system with large though finite
size, the bifurcations to chaos induced by noise can still be detected to a certain degree.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion

1 Introduction

The presence of noise or computer round off are ubiqui-
tous in physical experiments and computer simulations
and the study of their effects is of fundamental impor-
tance. From an intuitive point of view, noise spoils sig-
nals, and gives rise to various randomness and disorders.
However, in the last two decades we have become aware
of the active role of noise for enhancing coherence, signal
and order. Most of the work on this aspect has focused
on the stochastic resonance (SR) effect [1–11]. There ex-
ists another also widely accepted concept on noise; that
noise rules out fine structures and various bifurcations.
For instance, for period-doubling bifurcations appearing
in nonlinear systems, noise can definitely wash out high
periodicities. Can we find the opposite case, i.e., the ac-
tive role played by noise in inducing structures and does
there exist a certain optimal noise for this active effect?
In this paper, we investigate this subject; a huge vari-
ety of bifurcations to subharmonics, quasiperiodicities and
chaos are found to be induced by noise, and this is identi-
fied for a certain medium range of noise. In Section 2 we
describe our model, starting from a two-series globally-
coupled oscillator forced by uncorrelated white noise and
periodic forcing (Eqs. (2)). The continuous system is re-
duced to globally-coupled master equations in the small
limit of noise and forcing (Eqs. (4)). In Section 3, the cou-
pled master equations are further reduced to a set of two
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ordinary differential equations in the infinite size limit. We
find, in simulations, rich behavior of noise-induced sub-
harmonics, chaos and bifurcations among these different
types of motions for medium noise intensity. In Section 4,
we numerically compute the coupled master equations
(Eqs. (4)) and the original coupled continuous bistable
oscillators (Eqs. (2)). Noise-induced bifurcations to sub-
harmonics and chaos can be also clearly traced, qualita-
tively reproducing the essential features of the simplified
system. However, quantitative deviations between these
equations are relatively large since the parameter regions
where we find the complex structures are far beyond the
justification of our approximation for the reduction of the
equations. A brief conclusion is given in the last section.

2 Model

We consider a model of globally coupled two-series cells
which are indicated by (xi, yi), i = 1, 2, ... N . The inner
dynamics of each cell is described by

ẋ = ax− x3 + Γ (t),

ẏ = y − y3 +∆(t), (1)

where a > 0, Γ (t) and ∆(t) are white noises. While
all the cells are under periodic forcing A cos(ωt), they
are globally coupled with each other through a single
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quantity Z = X − Y as

ẋi = axi − x3
i + µ1Z(t) +A cos(ωt) + Γi(t)

ẏj = yj − y3
j + µ2Z(t) +A cos(ωt) +∆i(t)

〈Γi(t)〉 = 0, 〈Γi(t)Γi′(t′)〉 = 2D1δii′δ(t− t′)
〈∆j(t)〉 = 0, 〈∆j(t)∆j′(t′)〉 = 2D2δjj′δ(t− t′)
〈Γi(t)∆j(t′)〉 = 0 (2)

where X = 1
N

∑i=N
i=1 xi, Y = 1

N

∑j=N
j=1 yj , and xi are re-

garded being active, yi are suppressive. The competition
between x and y yields many interesting features of this
model. In equations (2) we take a = 0.9, ω = 0.009016,
µ2 = βµ1 = βµ, β = 0.6 and D1 = D2 = D through-
out the paper. Throughout the following, we investigate
the macroscopic state in phase space (X(t), Y (t)) which
shows the average behavior of the microscopic variables
(x1, y1; ...;xN , yN ). The positive couplings in equations (2)
can be also regarded as the diffusive couplings, and the
negative ones as resistance-like couplings. It is interest-
ing to investigate the effect caused by their interactions.
For (2) our theoretical analysis is based on the conditions

µ, A, ω, D � 1 and N � 1. (3)

The inequality µ,A, ω � 1 guarantees bistability of each
xi and yj in the system (2).

Under the condition (3), the continuous bistable sys-
tems (2) can be reduced to two-state systems for xi and
yj respectively, and then the coupled stochastic bistable
systems can be simplified to the following coupled master
equations [12]

Ṗ±xi = −RxP±xi +R∓x

Ṗ±yj = −RyP±yj +R∓y

P+
xi + P−xi = 1, i = 1, 2, ..., N

P+
yj + P−yj = 1, j = 1, 2, ..., N (4)

where P+
xi and P−xi (P+

yj and P−yj ) are the probabilities for
xi (yj) to take the state +

√
a and −√a (+1 and −1)

respectively; R+
x (R−x ) is the transition rate from state

+
√
a to −√a (−√a to +

√
a) for x, and R+

y (R−y ) is that
from +1 to −1 (−1 to +1) for y, which are:

R±x =
a√
2π

exp
(
− a2

4D
∓
√
a(µZ +A cos(ωt))

D

)
,

Rx = R+
x +R−x = r01 cosh

(√
a(µZ +A cos(ωt))

D

)
,

R±y =
1√
2π

exp
(
− 1

4D
∓ βµZ +A cos(ωt)

D

)
,

Ry = R+
y +R−y = r02 cosh

(
βµZ +A cos(ωt)

D

)
,

r01 =
a
√

2
π

exp
(
− a2

4D

)
,

r02 =
√

2
π

exp
(
− 1

4D

)
. (5)

In reference [13], we took A = 0, and considered the
average behavior of the system. The global variables
(X(t), Y (t)) of the system show three types of phases of
average motion under the condition N →∞; one of them
is the oscillation phase. In references [14,15], we studied
the case with periodic forcing. Noise-induced Hopf bifur-
cation was revealed, and stochastic resonance was found
which was sensitively dependent on the frequency of the
external forcing. In this paper, we start from the same
model described by equations (2, 3), but further investi-
gate the possibility of noise-induced bifurcations to vari-
ous subharmonics and chaos.

In the following we will focus on the master
equations (4) rather than equations (2). On the one
hand, the derivation and theory from equations (2–4)
under the condition (3) are well-established. On the
other hand, equations (4) are practically important in
their own right for describing globally coupled two-
state spin systems. Moreover, the numerical compu-
tation for equations (4) is considerably simpler than
that for equations (2) for the very large N values
needed to explore fully the rich complexities. Then in
the following sections, we study equations (4) only,
and release the constraints of equations (3) for linking
equations (2, 4), and freely consider a much wider region
for D and µ. Nevertheless, a brief discussion of the original
equations (2) will be also presented at the end of Section 4.

3 Noise-induced subharmonics and chaos
for an infinite system

By averaging equations (4)

〈X(t)〉 =
1
N

N∑
i=1

[
√
aP+

xi + (−
√
a)P−xi ]

〈Y (t)〉 =
1
N

N∑
j=1

[P+
yj + (−1)P−yj ] (6)

we can reduce the N coupled master equations (4) to a
set of two-dimensional differential equations

〈
·

X(t)〉 = −r01 cosh
(√

a(µZ +A cos(ωt))
D

)
〈X(t)〉

+
√
ar01 sinh

(√
a(µZ +A cos(ωt))

D

)
〈
·

Y (t)〉 = −r02 cosh
(
βµZ +A cos(ωt)

D

)
〈Y (t)〉

+ r02 sinh
(
βµZ +A cos(ωt)

D

)
. (7)
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Fig. 1. Different phases of the Farey tree distributed in the
D−µ parameter plane. A = 0.045. Squares indicate chaos, cir-
cles indicate quasiperiodicity, and the others represent periodic
regions. The marks Pnm signify the period m of the motion (m
times of the period of the driving force), which makes (m− n)
circles in each period.

In the thermodynamic limit N → ∞, X(t) = 〈X(t)〉 and
Y (t) = 〈Y (t)〉; we have

·
X(t) = −r01 cosh

(√
a(µZ +A cos(ωt))

D

)
X(t)

+
√
ar01 sinh

(√
a(µZ + A cos(ωt))

D

)
·

Y (t) = −r02 cosh
(

(βµZ +A cos(ωt))
D

)
Y (t)

+ r02 sinh
(

(βµZ +A cos(ωt))
D

)
Z(t) = X(t)− Y (t). (8)

Thus, the high-dimensional master equations (4) with an
infinite system size are reduced to a set of two-dimensional
coupled differential equations (8).

Now we focus on the dynamics of (X(t), Y (t)). Figure 1
illustrates the phase space µ − D with periodic forcing
fixed at A = 0.045. The squares in Figure 1 denote chaos,
the circles correspond to quasiperiodicity, and the blank
regions mean periodic motions of the system, where Pnm
indicates that the system on the left edge of the given zone
has periodic trajectories of period mT , which runs at an
angle of (m− n) ∗ 2π around the center of the coordinate
system (X(t), Y (t)) in each period (T means the period of
the driving force, and equals to 2π

ω ). This motion will be
followed by a period-doubling cascade in the same zone.

For very small D the system behaves with a quasiperi-
odic oscillation, which is typical for a limit cycle sys-
tem [13] subject to a periodic forcing. For very largeD, the
motion is a periodic oscillation with the same frequency as

Fig. 2. The same as Figure 1 with A = 0.0075; no chaos exists.

the forcing, which is expected for a fixed point system [13]
subject to a periodic forcing. The behaviors for both large
and small D are simple, while, for medium D, the system
shows very rich and interesting noise-induced transitions,
and has many complex structures. The optimal noise for
rich bifurcations and patterns can be regarded as a kind
of stochastic resonance for generating complexity.

Detailed simulation shows that the chaotic system
bifurcates into periodic windows through inverse tan-
gent bifurcation, and various windows appear in an or-
der of Farey tree as P2

3, P1
2, P2

5, P1
3, P2

7, P1
4, P2

9, P1
5,

P2
11, P1

6, P2
13, P1

7, P2
15, P1

8... In Figure 2 we repeat as for
Figure 1, but for smaller periodic forcing A = 0.0075, then
one can no longer see chaos. Apart from the large P1

1 region
we find only a quasiperiodicity “sea” containing various
periodic “tongues”. Figures 3–5 take some examples for
some branches of the Farey tree, chaos, and quasiperi-
odicity in Figure 1, with µ fixed at 0.16 and D varied.
Figures 3a–f show orbits of P2

3, P1
2, P2

5, P1
3, chaos, and

quasiperiodic motion, respectively. Figures 4a–f are their
strobe plots, in which (X(t),Y (t)) are plotted at times
t = nT with n being large positive integers, while Fig-
ures 5a–f present the corresponding frequency spectra. Co-
existence of multiple attractors can be observed in certain
regions.

We compute the largest Lyapunov exponents of the
system vs. D for µ = 0.16 in Figure 6a, and vs. µ for
D = 0.045 in Figure 6b. The largest positive Lyapunov
exponent refers to the squared chaotic subregions in Fig-
ure 1, and the zero Lyapunov exponent corresponds to the
circled quasiperiodic subregions. Figure 6a shows clearly
that the Farey tree will grow into an infinite period at
certain finite accumulation parameter point. This period
cannot, however, be identified due to our finite preci-
sion. Quasiperiodicity can be seen easily for both small
D (D < 0.0365, and one example in Figs. 3f, 4f and 5f)
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Fig. 3. Orbits of different types of motion of equation (8).
µ = 0.16, D = 0.04, 0.0445, 0.046, 0.0472, 0.04564 and 0.036
in (a–f), and the motions observed are P2

3, P1
2, P2

5, P1
3, chaos,

and quasiperiodicity, respectively.

Fig. 4. Strobe plots corresponding to Figure 3.

Fig. 5. Frequency spectra corresponding to Figure 3 where f1

is the frequency of the driving force f1 = ω
2π

.

Fig. 6. (a) The maximum Lyapunov exponent λm vs. D with
µ fixed at 0.16. (b) The maximum Lyapunov exponent λm vs.
µ with D fixed at 0.045.
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Fig. 7. (a–d) Orbits P1
2 in (a) and its period-doublings; P2

4

in (b), P4
8 in (c), and P8

16 in (d). µ = 0.16, and D is 0.04450
for (a); 0.04510 for (b); 0.045140 for (c); and 0.045150 for (d).
(e–h): Strobe plots corresponding to (a–d), respectively.

and large D (0.0496 < D < 0.0499) regions, depending
on the largest Lyapunov exponent remaining on zero. We
can find quasiperiodicity to chaos in the boundary of the
corresponding parameter regions.

On the other hand, in each periodic window of the
Farey tree one can find a period-doubling cascade leading
to chaos. Figure 7 gives some examples for the periodic
doubling bifurcation route in the P1

2 window referring to
Figure 1 and in the interval of 0.0435 < D < 0.0452 in
Figure 6a. In Figure 7, we have µ = 0.16, and (a–d) are
orbits of P1

2, P2
4, P4

8, and P8
16, while (e–h) are their strobe

plots, respectively.
In brief, it is clear that the system motion is rather

simple either for very small or rather largeD; rich bifurca-
tions to various subharmonics and chaos can be observed
only in a certain intermediate range of D as far as driving
force A (not too weak) and infinite system size limits are
concerned. Therefore, the most complicated bifurcation
figure appears in a certain intermediate region of noise
intensity, this reminds us of an analog of stochastic reso-
nance in producing a complexity to the average motion of
the extended system.

Fig. 8. (a–c) Orbits from the simulation of equations (4). (d–
f) Strobe plots corresponding to (a–c). (g–i) Frequency spectra
corresponding to (a–c). N = 30, and all other parameters of
(a–c) are the same as those of Figures 3 (a–c), respectively.

4 Numerical results for coupled systems
with finite system size

All the above results are obtained from equations (8),
which are valid for the thermodynamic limit, N → ∞.
Realistically, any system has finite system size, and it is
necessary to study the finite system size effect. In par-
ticular, we should investigate whether the noise-induced
rich structures can survive for finite system size. For in-
stance, it is interesting to study to what extent the two-
dimensional equations (8) can well represent the original
N coupled master equations (4), and for how large N the
bifurcation figures of Figures 3–5 can be reproduced for
the large noise system. Now we will directly investigate
equations (4) for different N with all other parameters
being taken the same as (a–c) of Figures 3–5, and com-
pare the results with those from equations (8).

First, we set the system size to a very small value, and
Figure 8 shows an example with N = 30. Then we find
random motion only, which is trivial behavior for a pe-
riodically driven noisy system, and no any trace for var-
ious complexities is evident except a small tail of sub-
harmonics in the spectra, for example 1

3f1 in Figure 8g
and 1

4f1 in Figure 8h. By increasing the system size to a
medium value (e.g., N = 100), various subharmonics ap-
pear. In Figure 9, we can observe P2

3 clearly in the trajec-
tory of (a), the strobe plot of (d), and the power spectrum
of (g), which are fully in agreement with Figures 3a, 4a
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Fig. 9. The same as Figure 8 with N = 100.

and 5a, respectively. Thus, equations (8) produce qualita-
tively correct behavior of equations (4). However, fluctua-
tion caused by the finite system size destroys P1

2 (referring
to (b) in Figs. 3–5), and only a small trace of 1

2f1 can be
found in the spectrum of Figure 9h. In Figures 9c, f and i
one can observe P1

3 motion, while for the same parameters
the motion of equations (8) was P2

5. Therefore, finite sys-
tem size can shift the bifurcation diagram of the coupled
system.

Increasing N further, we find: the larger the sys-
tem size (N), the weaker the fluctuations are due to fi-
nite system size, so more numerous sharper bifurcations
can survive, and the better equations (8) can represent
equations (4). In order to show the rich bifurcations clearly
and in the same location as in Figures 3–5, the finite sys-
tem should have no less than 104 cells. In Figure 10, we
show the three subharmonics of N = 104, and they are all
consistent with those in Figures 3–5.

In Figure 11, we directly compute the original system,
(Eqs. (2)), forN = 104. We find a number of subharmonics
like period-three, period-four, and period-five, represented
by the corresponding strobe plots and spectra; these con-
firm the existence of noise-induced complexities. How-
ever, the parameter values for various subharmonics for
equations (2) are distinguished from those for (8). This
is due to the fact that condition (3) is invalid since the
D and µ values for the given subharmonics are no longer
small.

Fig. 10. The same as Figure 8 with N = 104.

Fig. 11. (a–c) Orbits from the simulation of equation (2).
N = 20000, µ = 0.16. (d–f) Strobe plots correspond-
ing to (a–c). (g–i) Frequency spectra corresponding to
(a–c). (a, d, g) show period three oscillation with D = 0.043;
(b, e, h) show period four oscillation with D = 0.0402; (c, f, i)
show period five oscillation with D = 0.039.
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5 Conclusion

In summary, we have investigated noise-induced bifurca-
tion behavior of the average motion in globally coupled
stochastic oscillators. Large numbers of coupled Langevin
equations, which consist of two kinds of competing cells
under small periodic forcing, are considered. With infinite
size limit, the coupled master equations simplified from
the model can be reduced to a set of two-dimensional dif-
ferential equations. The reduced system exhibits a simple
behavior for either very small or rather large noise in-
tensity, but for an intermediate D, considerable complex
behavior appears. Rich bifurcations to subharmonics in-
duced by noise exist and they array in the Farey tree.
If the periodic forcing A is not too weak, chaos can be
induced by noise and there are three routes for the transi-
tion into chaos, i.e., tangent bifurcation to chaos, periodic
doubling cascade to chaos, and quasiperiodicity to chaos.
If the forcing is too weak, a quasiperiodic sea and phase
locking tongues are observed.

In addition, the influence of a finite system size is con-
sidered. It is found that infinitely sharp bifurcations can
be found only in the limit N → ∞. This is similar to
the phase transitions in equilibrium states. Nevertheless,
various complexities revealed for N →∞ can be still ob-
served for finite systems, though reducing system size can
smoothen sharpness of bifurcations, rule out subharmonics
with high periods and shift the locations of various sub-
harmonics in the parameter space. Of course, very small
N would certainly wipe away the fine structures entirely,
and produce only trivial behavior of periodically driven
random motion.

We come to the conclusion that noise can induce
complicated bifurcations to subharmonics and chaos in
the extended system under thermodynamic limit, and

these noise-induced complexities still survive for practi-
cally large though finite systems.

This work is supported by the National Science Foundation
of China, N19835020, Nonlinear Science Project, and Doctoral
Program Foundation of Institute of Higher Education.
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